Jądrowe złącze Josephsona

Efekt Josephsona jest zjawiskiem kwantowym występującym w nadprzewodnikach.
Polega na spontanicznym przepływie prądu, na skutek tunelowania, pomiędzy dwoma
nadprzewodnikami przedzielonymi cienką warstwą izolatora. Przepływ prądu wymuszany jest przez
różnicę faz funkcji falowych opisujących nadprzewodzące elektrony po obu
stronach izolatora. Taki układ nosi nazwę złącza Josephsona.
Zjawisko występuje w metalach, a także w ultrazimnych gazach
atomowych. Poszukiwania efektu Josephsona w układach jądrowych
trwają już niemal od półwiecza.
Analiza teoretyczna eksperymentów, w których zderzano Nikiel-60 i Cynę-116
dostarczyła silnych argumentów na powstanie złącza pomiędzy zderzającymi się jądrami.
W odróżnieniu od wcześniejszych pomiarów, w których badano przekrój czynny
na przekaz pary nukleonów, tym razem poddano analizie widmo promieniowania gamma.
Okazało się, że widmo emitowanych kwantów gamma zgadza się z przewidywaniami teoretycznymi
zakładającymi powstanie złącza (tzw. AC Josephson junction).

Piotr Magierski

The Tiniest Superfluid Circuit in Nature

Physics 14, 27 (2021)

DOI:10.1103/Physics.14.27

Przewidywania dla ponad tysiąca najcięższych jąder atomowych

Fizycy teoretycy z Narodowego Centrum Badań Jądrowych i Uniwersytetu Zielonogórskiego wyznaczyli i podali niezwykle istotne parametry dla ponad 1300 jąder, w tym dla jąder pierwiastków superciężkich, które do tej pory nie zostały wytworzone w laboratoriach. Wyniki te zostały właśnie opublikowane w podstawowym czasopiśmie referencyjnym fizyki jądrowej: Atomic Data and Nuclear Data Tables.

Naukowcy w wielu ośrodkach na świecie nie ustają w dążeniach do wytworzenia i zbadania nowych pierwiastków oraz ich izotopów. Ten międzynarodowy wyścig ma na celu przede wszystkim poznanie nadal tajemniczych sił wiążących jądra atomowe. Badania koncentrują się równolegle na pracach eksperymentalnych wykorzystujących potężne akceleratory i detektory, jak i na pracach teoretycznych mających wskazać najbardziej obiecujące drogi poszukiwań i zaproponować modele, które będzie można potwierdzić lub odrzucić po konfrontacji z doświadczeniem. Polscy naukowcy od kilkudziesięciu lat specjalizują się właśnie w tego typu badaniach teoretycznych, stanowiąc światową czołówkę, czego dobitnym potwierdzeniem jest zaprezentowana właśnie niezwykle obszerna i kompletna praca.

Trzech polskich uczonych: dr Piotr Jachimowicz z Uniwersytetu Zielonogórskiego oraz Michał Kowal i Janusz Skalski profesorowie w Narodowym Centrum Badań Jądrowych (NCBJ) oszacowali kluczowe parametry dla 1305 jąder ciężkich i superciężkich w zakresie liczby atomowej Z od 98 do 126 (a więc także dla pierwiastków jeszcze nie odkrytych) i dla liczby neutronów N od 134 do 192.

„Do naszych obliczeń wykorzystaliśmy wielowymiarowy mikroskopowo-makroskopowy model pozwalający wyznaczyć energię wiązania jąder atomowych” – tłumaczy dr Piotr Jachimowicz z UZ. „Dla stanów podstawowych oraz tzw. punktów siodłowych wyznaczyliśmy takie parametry jak: masy jądrowe, energie makroskopowe, poprawki powłokowe i deformacje jądrowe – czyli kształty jakie przybierają jądra w stanie podstawowym jak i w punkcie siodłowym. Z nich wyprowadziliśmy energie rozpadu alfa pomiędzy stanami podstawowymi, energie separacji jednego i dwóch nukleonów oraz statyczne, adiabatyczne wysokości barier rozszczepieniowych.”

„Systematyczne rachunki dla jąder nieparzystych, szczególnie ich barier rozszczepieniowych są bardzo rzadkie – nasza praca wypełnia tę lukę” – dodaje dr hab. Michał Kowal, Kierownik Zakładu Fizyki Teoretycznej NCBJ. „W przypadku układów z nieparzystą liczbą protonów, neutronów lub obu, używaliśmy standardowej metody BCS z blokowaniem. Kształty i energie w stanie podstawowym mogliśmy znaleźć poprzez minimalizację siedmiu odkształceń osiowo-symetrycznych. Poszukiwania punktów siodłowych przeprowadziliśmy metodą tzw. „zatapiania” w trzech kolejnych etapach, stosując wielowymiarowe przestrzenie deformacji, co wiązało się z potrzebą generowania gigantycznych sieci symulujących różne jądrowe kształty. W tym celu zaprzęgliśmy do obliczeń nasz superkomputer w Centrum Informatycznym w Świerku.”

Część wyników uzyskanych przez badaczy dotyczy parametrów już poznanych w eksperymencie i bardzo dobrze się z tymi danymi zgadza. Stanowi to potwierdzenie poprawności przeprowadzonej analizy i pozwala wierzyć, że wyznaczone wartości nieznanych dotąd parametrów są wiarygodne.

Uczeni podkreślają, że udało im się stworzyć jeden z najbardziej kompletnych zestawów danych dostępnych „na rynku”, niezbędny do analiz przekrojów czynnych, czyli prawdopodobieństw wytwarzania jąder superciężkich w poszczególnych kanałach syntezy. „Dokładność odtwarzania mas i innych wielkości wyznaczonych w analizowanym przez nas obszarze jest jedną z najlepszych pośród istniejących oszacowań” – dodaje dr hab. Janusz Skalski. „Wykorzystanie przez nas pięcio- i siedmiowymiarowych przestrzeni deformacji stanowi znaczący postęp w stosunku do innych obliczeń wykonywanych do tej pory. Przeprowadzona przez nas analiza jest też jedną z niewielu, które uwzględniają jądra nieparzyste, zwykle pomijane ze względu na trudności związane z traktowaniem nieparzystego nukleonu.”

Otrzymane wyniki nieprzypadkowo trafią do annałów Atomic Data and Nuclear Data Tables. Ich znaczenie nie ogranicza się bowiem tylko do eksperymentów mających na celu wytworzenie nowych nuklidów. „Wyznaczyliśmy parametry, których znajomość może mieć istotne znaczenie także i dla innych obszarów badań” – wyjaśnia dr hab. Michał Kowal. „Między innymi wyznaczyliśmy własności dla jąder z grupy aktynowców, ważne z punktu widzenia fizyki reaktorowej. Wyznaczone i podane w pracy parametry mogą zostać wykorzystane w analizach astrofizycznych i przewidywaniach dotyczących nukleosyntezy na poszczególnych etapach ewolucji Wszechświata.”

P. Jachimowicz, M. Kowal, J. Skalski

Properties of heaviest nuclei with 98 ≤ Z ≤ 126 and 134 ≤ N ≤ 192,  

Atomic Data and Nuclear Data Tables
(Available online 19 December 2020, 101393, in press).

https://doi.org/10.1016/j.adt.2020.101393

Do 7 lutego 2020 r. jest ona ogólnie dostępna online pod adresem https://authors.elsevier.com/a/1cGMz,26poewBO; później będzie dostępna w wersji drukowanej i dla subskrybentów czasopisma.

Nowe metody produkcji pierwiastków superciężkich

Wykonane obliczenia pozwalają przewidywać z niedostępną dotąd dokładnością szanse wytworzenia nowych izotopów pierwiastków superciężkich. W pracy opublikowanej w prestiżowym czasopiśmie Physics Letters B zaprezentowano najbardziej obiecujące kanały produkcji szerokiej gamy izotopów o liczbie atomowej od 112 do 118 w różnych konfiguracjach zderzeń jądrowych prowadzących do ich powstania. Przewidywania wydają się być wiarygodne, jako że potwierdzają je ze znakomitą zgodnością dane eksperymentalne dostępne dla procesów już przebadanych.

W pracy, która ukaże się w październikowym numerze prestiżowego czasopisma Physics Letters B międzynarodowy zespół pięciu naukowców zaprezentował nowe, niezwykle bogate i obiecujące wyniki przewidywań dla prawdopodobieństw (przekrojów czynnych) produkcji izotopów najcięższych pierwiastków o liczbach atomowych od 112 do 118. Obliczenia zostały przeprowadzone dla procesów fuzji indukowanej pociskami jądrowymi wapnia Ca-48 zgodnie z planami przyszłych eksperymentów.

Do tej pory, gdy liczono prawdopodobieństwa wytwarzania superciężkich izotopów, w ogóle nie brano pod uwagę efektów związanych z powłokowym charakterem punków siodłowych w rozszczepieniu jąder atomowych.  Wszyscy badacze zakładają brak efektów kwantowych dla tej kluczowej w procesie rozszczepienia konfiguracji jądrowej. My te efekty uwzględniliśmy, a co więcej podaliśmy przepis ich tłumienia wraz ze wzrostem temperatury tworzącego się superciężkiego układu jądrowego. Takie obliczenia nie były dotąd prezentowane nigdzie w literaturze.

Aby uzyskać swój wynik uczeni posłużyli się metodą statystyczną, generując miliony stanów nad stanem podstawowym i wspominanym punktem siodłowym. Metodę i wyniki opisali szczegółowo w równolegle skierowanej do publikacji pracy. Mając te wyniki można było dość prosto policzyć prawdopodobieństwo przetrwania jąder wytworzonych w wyniku konkretnego zderzenia pocisku i odpowiednio dobranej tarczy. Po prostu, korzystając z podstawowej definicji prawdopodobieństwa przetrwania jądra złożonego, właściwie bez stosowania przybliżeń, oszacowaliśmy współzawodnictwo rozszczepienia z rożnymi innymi kanałami rozpadu.

Badając stabilność i analizując możliwe kanały rozpadu tworzonych jąder, badacze uwzględnili zarówno rozpady poprzez emisję neutronów, jak i protonów oraz cząstek alfa. Wyniki zaprezentowane w pracy bardzo dobrze zgadzają się z danymi uzyskanymi w przeprowadzonych już eksperymentach. Jednocześnie autorzy wskazują na najbardziej obiecujące kanały produkcji nowych, nie wytwarzanych dotąd izotopów, które mogłyby być wykorzystane w przyszłych planowanych eksperymentach. Rewelacyjna zgodność z istniejącymi funkcjami wzbudzania (prawdopodobieństwami syntezy jąder superciężkich) pozwala mieć zaufanie do zaprezentowanych prognoz i przewidywań. Szczególnie obiecujące dla niektórych kombinacji tarcza-pocisk okazują się być kanały z emisją jednego protonu lub jednej cząstki alfa. Ten wynik jest intrygujący, gdyż może prowadzić do zupełnie nowych, nieznanych dziś izotopów jąder superciężkich. Ponieważ zaproponowane kanały reakcji nie są nadmiernie egzotyczne, a raczej łatwo dostępne w eksperymencie, już wkrótce okaże się czy przewidywania uczonych co do możliwości produkcji tych nowych wyjątkowo ciężkich izotopów się potwierdzą.

Prace oryginalne są dostępne publicznie:

„Possibilities of direct production of superheavy nuclei with Z=112–118 in different evaporation channels”, J.Hong, G.G.Adamian, N.V.Antonenko, P.Jachimowicz, M.Kowal; Physics Letters B, Volume 809, 10 October 2020, 135760
https://www.sciencedirect.com/science/article/pii/S0370269320305633

“Level-density parameters in superheavy nuclei” A. Rahmatinejad, A. N. Bezbakh, T. M. Shneidman, G. Adamian, and N. V. Antonenko, P. Jachimowicz, M. Kowal
https://arxiv.org/pdf/2005.08685.pdf

Zakład Fizyki Teoretycznej NCBJ zajmuje się badaniami podstawowych składników materii oraz teoretycznym opisem fundamentalnych odziaływań pomiędzy nimi tak w skali mikro- jak i makro-świata. W Zakładzie prowadzone są prace z zakresu podstaw fizyki jądrowej (struktury i dynamiki) wysokich i niskich energii, w tym badania własności jąder ciężkich i superciężkich. Nasi naukowcy rozwijają też teorię cząstek elementarnych w tym modele supersymetryczne wychodzące poza dziś znany model standardowy oraz chromodynamikę kwantową badającą skład i odziaływanie nukleonów. W Zakładzie rozważane są także zagadnienia z zakresu fizyki zjawisk nieliniowych, fizyki plazmy oraz kondensatów atomowych. Kolejne dziedziny, w których prowadzone są prace to teoretyczna kosmologia i teorie grawitacyjne, a także teoria strun i jej implikacje.

Zdjęcie: Cyklotron DC-280 w Laboratorium Flerowa – Fabryce Superciężkich Pierwiastków w Zjednoczonym Instytucie Badań Jądrowych w Dubnej. Credit: JINR