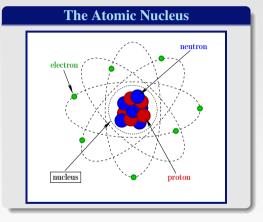
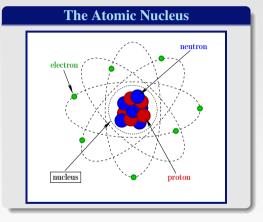

Exotic Shapes and Symmetries of Atomic Nuclei

Irene DEDES

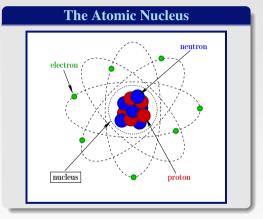

The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences Kraków, Poland

Open Meeting of the Nuclear Physics Section of the Polish Physical Society 27 October 2023



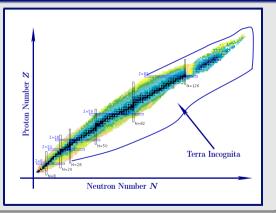
• The **atomic nucleus** is the small and dense part at the center of an atom.

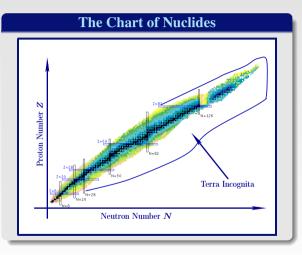
• The **atomic nucleus** is the small and dense part at the center of an atom.


• It is composed of **Z protons** and **N neutrons**, and it contains 99.9% of the mass of the atom.

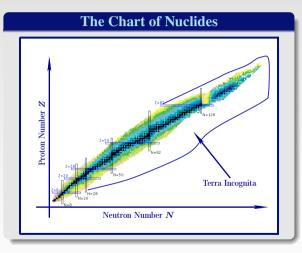
• The **atomic nucleus** is the small and dense part at the center of an atom.

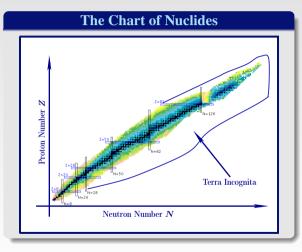
• It is composed of **Z protons** and **N neutrons**, and it contains 99.9% of the mass of the atom.


• Thanks to the scientific experiments which allow us to detect and analyze the atomic nuclei microscopically, we observe that **they can take different shapes**, far from spherical ones.



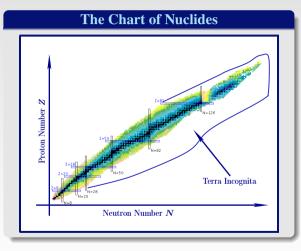
- The **atomic nucleus** is the small and dense part at the center of an atom.
- It is composed of **Z protons** and **N neutrons**, and it contains 99.9% of the mass of the atom.
- Thanks to the scientific experiments which allow us to detect and analyze the atomic nuclei microscopically, we observe that **they can take different shapes**, far from spherical ones.


The Atomic Nucleus Can Be Deformed!



• Among nearly 3000 systems known experimentally:

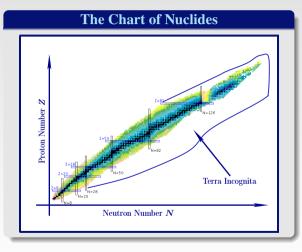
• Among nearly 3000 systems known experimentally:


 \rightarrow about 200 nuclei are stable; they are marked in black.

• Among nearly 3000 systems known experimentally:

 \rightarrow about 200 nuclei are stable; they are marked in black.

 \rightarrow more than 80% are strongly deformed, only about 8 'really spherical'



• Among nearly 3000 systems known experimentally:

 \rightarrow about 200 nuclei are stable; they are marked in black.

 \rightarrow more than 80% are strongly deformed, only about 8 'really spherical'

• **Terra Incognita**: Still >6000 nuclei are expected to exist...

• Among nearly 3000 systems known experimentally:

 \rightarrow about 200 nuclei are stable; they are marked in black.

 \rightarrow more than 80% are strongly deformed, only about 8 'really spherical'

• **Terra Incognita**: Still >6000 nuclei are expected to exist...

High chances that they are deformed!

• Give the theoretical explanations to the experimental nuclear structure phenomena observed, as well as predicting the still unknown

How do we perform our studies?

• We describe the nuclear interior, i.e. *nuclear structure*, with a simple but very reliable and powerful theory called: **The Nuclear Mean-Field Theory**

• We combine contemporary **mathematical tools** of group theory, inverse problem theory and graph-theory with phenomenological nuclear mean-field theory

• Give the theoretical explanations to the experimental nuclear structure phenomena observed, as well as predicting the still unknown

How do we perform our studies?

• We describe the nuclear interior, i.e. *nuclear structure*, with a simple but very reliable and powerful theory called: **The Nuclear Mean-Field Theory**

• We combine contemporary **mathematical tools** of group theory, inverse problem theory and graph-theory with phenomenological nuclear mean-field theory

• Give the theoretical explanations to the experimental nuclear structure phenomena observed, as well as predicting the still unknown

How do we perform our studies?

• We describe the nuclear interior, i.e. *nuclear structure*, with a simple but very reliable and powerful theory called: **The Nuclear Mean-Field Theory**

• We combine contemporary **mathematical tools** of group theory, inverse problem theory and graph-theory with phenomenological nuclear mean-field theory

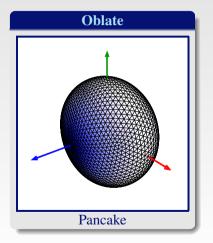
• Give the theoretical explanations to the experimental nuclear structure phenomena observed, as well as predicting the still unknown

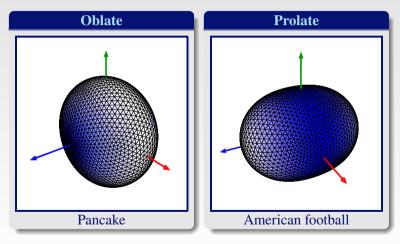
How do we perform our studies?

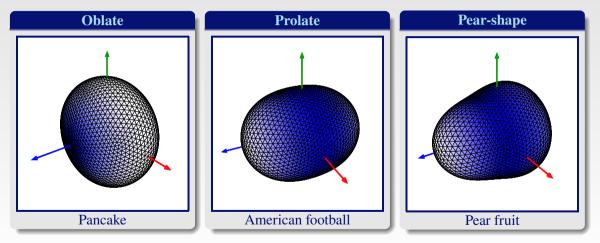
• We describe the nuclear interior, i.e. *nuclear structure*, with a simple but very reliable and powerful theory called: **The Nuclear Mean-Field Theory**

• We combine contemporary **mathematical tools** of group theory, inverse problem theory and graph-theory with phenomenological nuclear mean-field theory

Research Projects of Our Group *"Nuclear Structure Microscopic Studies"*

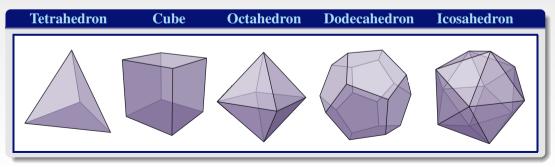

• Nuclear Exotic Symmetries: Symmetries from the world of *molecules* but detected in *subatomic* physics, such as Tetrahedral and Octahedral Symmetries (High Rank Symmetries)


- Shape Coexistence and Evolution
- Special Shape Isomers in axially symmetric nuclei

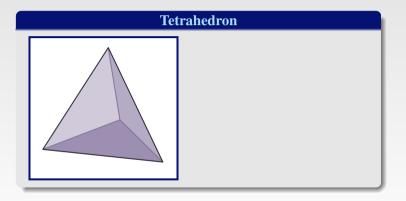

• Shape Phase Transitions: Known from astronomy Jacobi and Poincaré shape transitions taking place in stars \rightarrow here: detected and studied in detail in nuclei

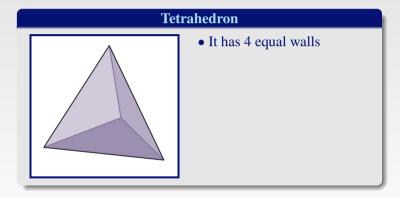
• **Stability of Nuclear Theory Predictions**: As a remark "for experts" – Parameter correlation removal as professional means of stabilising the theory prediction capacities

• Improving the Phenomenological Description of Nuclear Mean-Field Hamiltonian: Density dependent spin-orbit together with tensor-force components

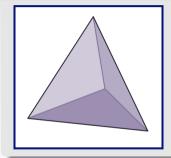


• Already in Ancient Greece, they were interested in the *beauty in symmetry*

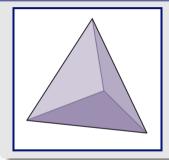

- Already in Ancient Greece, they were interested in the *beauty in symmetry*
- **Platonic Solids** (Plato, 428-347 bC): Polyhedra whose faces are identical regular convex polygons


- Already in Ancient Greece, they were interested in the beauty in symmetry
- **Platonic Solids** (Plato, 428-347 bC): Polyhedra whose faces are identical regular convex polygons
- The allowed polygons are: triangles, squares and regular pentagons

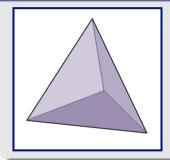
- Already in Ancient Greece, they were interested in the *beauty in symmetry*
- **Platonic Solids** (Plato, 428-347 bC): Polyhedra whose faces are identical regular convex polygons
- The allowed polygons are: triangles, squares and regular pentagons
- Thus, there are only five Platonic Solids:



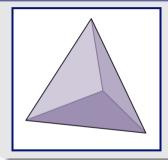
Tetrahedron	



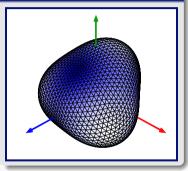
- It has 4 equal walls
- Invariant with respect to 24 symmetry elements,


Tetrahedron

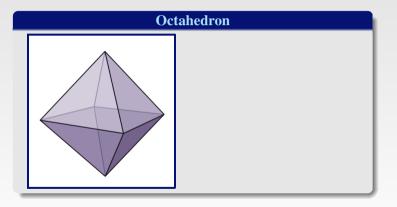
• It has 4 equal walls

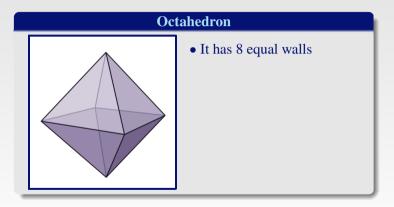

- Invariant with respect to 24 symmetry elements,
- But it is not invariant with respect to inversion

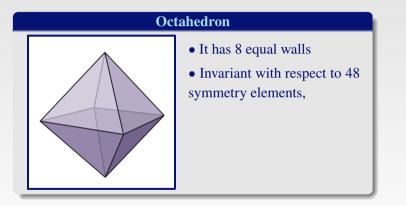
Tetrahedron

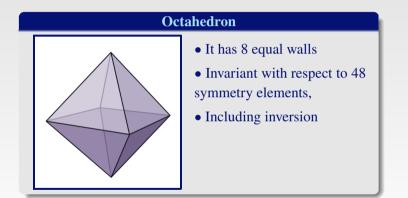

- It has 4 equal walls
- Invariant with respect to 24 symmetry elements,
- But it is not invariant with respect to inversion
- Nuclei cannot be represented by a sharp-edge pyramid

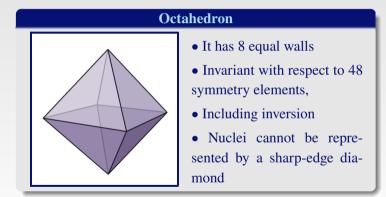
Tetrahedron

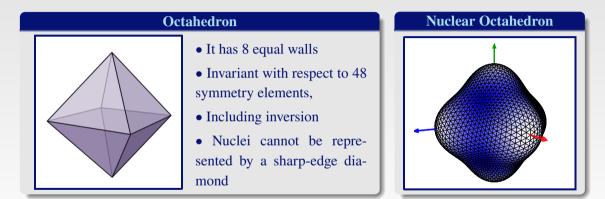



- It has 4 equal walls
- Invariant with respect to 24 symmetry elements,
- But it is not invariant with respect to inversion
- Nuclei cannot be represented by a sharp-edge pyramid


Nuclear Tetrahedron


Octahedron	




Non-Trivial Exotic Nuclear Shapes: Octahedral Symmetry

Non-Trivial Exotic Nuclear Shapes: Octahedral Symmetry

Non-Trivial Exotic Nuclear Shapes: Octahedral Symmetry

• Atomic nuclei can adopt several different shapes (depending on their number of protons and neutrons, among others)

• Such symmetries might range from a 'simple' sphere, or trivial modifications of it (e.g. oblate, prolate), to more exotic shape such as *tetrahedral (nuclear pyramid)* and *octahedral (nuclear diamond)*

• Such exotic symmetries present new properties never seen before in nuclear physics

• Thus, they may lead to new explanations and interpretations of the nuclear interior, thus helping in completing the Nuclear Chart

Interestingly Enough:

• Exotic Symmetries are widely studied in Molecular Chemistry (from where *molecular* symmetries), not so much in Nuclear Physics

• Atomic nuclei can adopt several different shapes (depending on their number of protons and neutrons, among others)

• Such symmetries might range from a 'simple' sphere, or trivial modifications of it (e.g. oblate, prolate), to more exotic shape such as *tetrahedral (nuclear pyramid)* and *octahedral (nuclear diamond)*

• Such exotic symmetries present new properties never seen before in nuclear physics

• Thus, they may lead to new explanations and interpretations of the nuclear interior, thus helping in completing the Nuclear Chart

Interestingly Enough:

• Exotic Symmetries are widely studied in Molecular Chemistry (from where *molecular* symmetries), not so much in Nuclear Physics

• Atomic nuclei can adopt several different shapes (depending on their number of protons and neutrons, among others)

• Such symmetries might range from a 'simple' sphere, or trivial modifications of it (e.g. oblate, prolate), to more exotic shape such as *tetrahedral (nuclear pyramid)* and *octahedral (nuclear diamond)*

• Such exotic symmetries present new properties never seen before in nuclear physics

• Thus, they may lead to new explanations and interpretations of the nuclear interior, thus helping in completing the Nuclear Chart

Interestingly Enough:

• Exotic Symmetries are widely studied in Molecular Chemistry (from where *molecular* symmetries), not so much in Nuclear Physics

• Atomic nuclei can adopt several different shapes (depending on their number of protons and neutrons, among others)

• Such symmetries might range from a 'simple' sphere, or trivial modifications of it (e.g. oblate, prolate), to more exotic shape such as *tetrahedral (nuclear pyramid)* and *octahedral (nuclear diamond)*

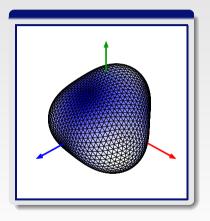
• Such exotic symmetries present new properties never seen before in nuclear physics

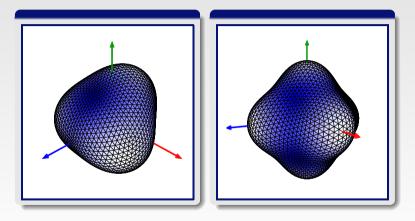
• Thus, they may lead to new explanations and interpretations of the nuclear interior, thus helping in completing the Nuclear Chart

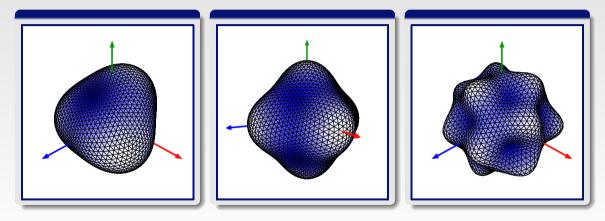
Interestingly Enough:

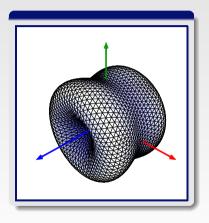
• Exotic Symmetries are widely studied in Molecular Chemistry (from where *molecular* symmetries), not so much in Nuclear Physics

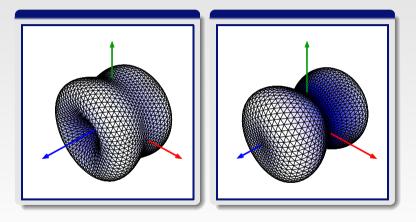
• Atomic nuclei can adopt several different shapes (depending on their number of protons and neutrons, among others)

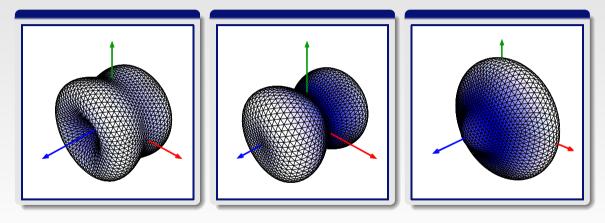

• Such symmetries might range from a 'simple' sphere, or trivial modifications of it (e.g. oblate, prolate), to more exotic shape such as *tetrahedral (nuclear pyramid)* and *octahedral (nuclear diamond)*

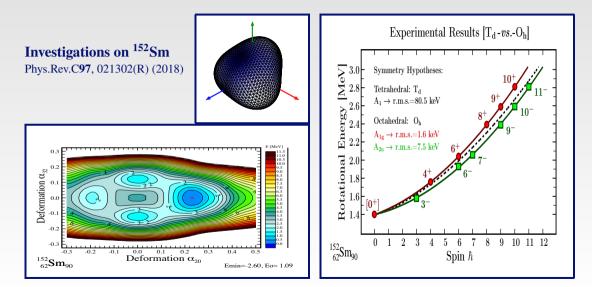

• Such exotic symmetries present new properties never seen before in nuclear physics

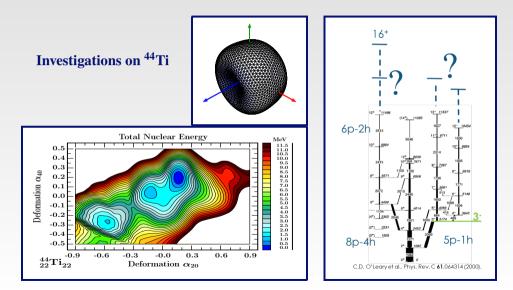

• Thus, they may lead to new explanations and interpretations of the nuclear interior, thus helping in completing the Nuclear Chart


Interestingly Enough:


• Exotic Symmetries are widely studied in Molecular Chemistry (from where *molecular* symmetries), not so much in Nuclear Physics







I have a great interest in understanding the quantum world surrounding us

1. I would like to imagine **what the atomic nuclei are like** – knowing that we will never be able to observe them the way we observe insects under the microscopes

2. For that I collect the already known information and **formulate the questions**: What do we think we understand? What don't we understand? Why?

3. I learn **quantum mechanics** and **computing** to be able to answer such questions *myself* and then explain other people... *but newer, more interesting and exciting questions appear!!*

5. Then I invent my methods in quantum mechanics and write my computer programs and have even bigger satisfaction in providing next steps of understanding

I have a great interest in understanding the quantum world surrounding us

1. I would like to imagine **what the atomic nuclei are like** – knowing that we will never be able to observe them the way we observe insects under the microscopes

2. For that I collect the already known information and **formulate the questions**: What do we think we understand? What don't we understand? Why?

3. I learn **quantum mechanics** and **computing** to be able to answer such questions *myself* and then explain other people... *but newer, more interesting and exciting questions appear!!*

5. Then I invent my methods in quantum mechanics and write my computer programs and have even bigger satisfaction in providing next steps of understanding

I have a great interest in understanding the quantum world surrounding us

1. I would like to imagine **what the atomic nuclei are like** – knowing that we will never be able to observe them the way we observe insects under the microscopes

2. For that I collect the already known information and **formulate the questions**: What do we think we understand? What don't we understand? Why?

3. I learn **quantum mechanics** and **computing** to be able to answer such questions *myself* and then explain other people... *but newer, more interesting and exciting questions appear!!*

5. Then I invent my methods in quantum mechanics and write my computer programs and have even bigger satisfaction in providing next steps of understanding

I have a great interest in understanding the quantum world surrounding us

1. I would like to imagine **what the atomic nuclei are like** – knowing that we will never be able to observe them the way we observe insects under the microscopes

2. For that I collect the already known information and **formulate the questions**: What do we think we understand? What don't we understand? Why?

3. I learn **quantum mechanics** and **computing** to be able to answer such questions *myself* and then explain other people... *but newer, more interesting and exciting questions appear!!*

5. Then I invent my methods in quantum mechanics and write my computer programs and have even bigger satisfaction in providing next steps of understanding

I have a great interest in understanding the quantum world surrounding us

1. I would like to imagine **what the atomic nuclei are like** – knowing that we will never be able to observe them the way we observe insects under the microscopes

2. For that I collect the already known information and **formulate the questions**: What do we think we understand? What don't we understand? Why?

3. I learn **quantum mechanics** and **computing** to be able to answer such questions *myself* and then explain other people... *but newer, more interesting and exciting questions appear!!*

5. Then I invent my methods in quantum mechanics and write my computer programs and have even bigger satisfaction in providing next steps of understanding

I have a great interest in understanding the quantum world surrounding us

1. I would like to imagine **what the atomic nuclei are like** – knowing that we will never be able to observe them the way we observe insects under the microscopes

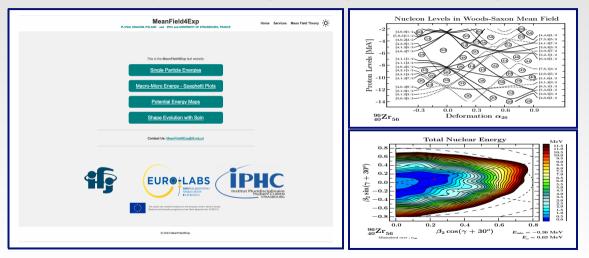
2. For that I collect the already known information and **formulate the questions**: What do we think we understand? What don't we understand? Why?

3. I learn **quantum mechanics** and **computing** to be able to answer such questions *myself* and then explain other people... *but newer, more interesting and exciting questions appear!!*

5. Then I invent my methods in quantum mechanics and write my computer programs and have even bigger satisfaction in providing next steps of understanding

I have a great interest in understanding the quantum world surrounding us

1. I would like to imagine **what the atomic nuclei are like** – knowing that we will never be able to observe them the way we observe insects under the microscopes


2. For that I collect the already known information and **formulate the questions**: What do we think we understand? What don't we understand? Why?

3. I learn **quantum mechanics** and **computing** to be able to answer such questions *myself* and then explain other people... *but newer, more interesting and exciting questions appear!!*

5. Then I invent my methods in quantum mechanics and write my computer programs and have even bigger satisfaction in providing next steps of understanding

PUBLICITY: EURO-LABS Project – MeanField4Exp

• Our Team is developing a website to improve the cooperation between nuclear physicists

