Barrier distribution studies at HIL: influence of dissipation

Giulia Colucci

Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

Two interactions: long range repulsive **Coulomb force** and short range attractive **nuclear force**. Cancellation between the two forces generates **Coulomb barrier**.

K. Hagino, Progress of Theoretical Physics, Vol. 128, No. 6, (2012)

Fusion and quasielastic barrier distributions

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

•

Two interactions: long range repulsive **Coulomb force** and short range attractive **nuclear force**. Cancellation between the two forces generates **Coulomb barrier**.

Why near- and sub-barrier fusion?

- Many-particle tunnelling effect
 - Many types of intrinsic degrees of freedom (collective vibrational, rotational states..)
 - Beam energy dependence
- Strong interplay between reaction and nuclei structure

K. Hagino, Progress of Theoretical Physics, Vol. 128, No. 6, (2012)

Fusion and quasielastic barrier distributions

•

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

Two interactions: long range repulsive **Coulomb force** and short range attractive **nuclear force**. Cancellation between the two forces generates **Coulomb barrier**.

Why near- and sub-barrier fusion?

- Many-particle tunnelling effect
 - Many types of intrinsic degrees of freedom (collective vibrational, rotational states..)
 - Beam energy dependence
- Strong interplay between reaction and nuclei structure

K. Hagino, Progress of Theoretical Physics, Vol. 128, No. 6, (2012)

Fusion and quasielastic barrier distributions

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

Two interactions: long range repulsive **Coulomb force** and short range attractive **nuclear force**. Cancellation between the two forces generates **Coulomb barrier**.

Why near- and sub-barrier fusion?

Many-particle tunnelling effect

1200

1000

800

600

400

200

55

D_{fus} (mb/MeV)

- Many types of intrinsic degrees of freedom (collective vibrational, rotational states..)
 - → Beam energy dependence

 $16O + 144Sm^{1}$

65

(MeV)

60

E_{c.m.}

70

 Strong interplay between reaction and nuclei structure

100

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

Fusion and quasielastic barrier distributions

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

Theoretically the two approaches are approximately **complementary**

Fusion and quasielastic barrier distributions

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

Theoretically the two approaches are approximately **complementary**

Coupled Channels (CC)

model takes into account strong collective excitations of the participating nuclei The role of dissipation by a multitude of **non-collective excitations** and different **transfer channels** is much less understood

Fusion and quasielastic barrier distributions

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

Calculations carried out by the Coupled Channels (CC) method predict the distribution of barriers with a strong "structure" for all ²⁰Ne + X systems

Two peaks structure

Fusion and quasielastic barrier distributions

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

E. Piasecki et al., Phys. Rev. , C 80 (2009) 054613

Fusion and quasielastic barrier distributions

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

Influence of single particle excitations on the smoothing of the barrier distribution

E. Piasecki et al., Phys. Rev., C 80 (2009) 054613

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

²⁰Ne projectile - strongly deformed nucleus: $\beta_2 = 0.46$, $\beta_3 = 0.39$, $\beta_4 = 0.27$

Influence of single particle excitations on the smoothing of the barrier distribution

Dissipation due to the coupling of a multitude of noncollective levels

E. Piasecki et al., Phys. Rev. C 100 (2019) 014616 S. Yusa et al., Phys. Rev. C 82 (2010) 024606 E. Piasecki et al., Phys. Rev. , C 80 (2009) 054613

2nd Open Meeting of the Nuclear Physics Section of the Polish Physical Society – Warsaw 27/10/2023 G. Colucci 5

Fusion and quasielastic barrier distributions

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

 D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

CUDAC (Coulomb Universal Detector Array Chamber) at HIL

- 30 PIN diodes (1cmx1cm) at the backward angles of 125°, 135°, 145°
- 4 PIN diodes the forward angles of 35°

Fusion and quasielastic barrier distributions	
D _{QE} measurements at HIL : ²⁰ Ne + ^{90,92} Zr	
D _{QE} of ²⁰ Ne + ^{92,94,95} Mo	
Future plans	
Why nuclear physics?	
	HIIL eavy Ion Laboratory

Near barrier fusion

reactions

Direct transfer cross-section measurements of the ²⁰Ne+^{92,94,95}Mo

Comparison of the transfer cross sections for different transfer reaction of the neighbour isotopes

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

Direct transfer cross-section measurements of the ²⁰Ne+^{92,94,95}Mo

• Comparison of the transfer cross sections for different transfer reaction of the neighbour isotopes

ICARE - charged particles detector system

Fusion and quasielastic barrier distributions

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

Direct transfer cross-section measurements of the ²⁰Ne+^{92,94,95}Mo

Comparison of the transfer cross sections for different transfer reaction of the neighbour isotopes

ICARE - charged particles detector system

Fusion and quasielastic barrier distributions

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

```
D_{QE} \text{ of } {}^{20}\text{Ne} + {}^{92,94,95}\text{Mo}
```

Future plans

Why nuclear physics?

Direct transfer cross-section measurements of the ²⁰Ne+^{92,94,95}Mo

Comparison of the transfer cross sections for different transfer reaction of the neighbour isotopes

ICARE - charged particles detector system

Experiment will be performed beginning next year

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

Fusion barrier distribution measurement through the direct detection of evaporation residues

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

Fusion barrier distribution measurement through the direct detection of evaporation residues

Experiment will be performed next year

Fusion and quasielastic barrier distributions

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

Experimental nuclear physics allows you to follow an experiment in its entire process

From detectors' characterization to the experimental and theoretical analysis of the data

Fusion and quasielastic barrier distributions

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

- Experimental nuclear physics allows you to follow an experiment in its entire process
 - From detectors' characterization to the experimental and theoretical analysis of the data
- Barrier distributions show up significant differences among different systems
 - Fingerprint of the structure of the interacting nuclei and the dynamics of the reaction

Fusion and quasielastic barrier distributions

D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr

D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

HIL Heavy Ion Laboratory

- Experimental nuclear physics allows you to follow an experiment in its entire process
 - From detectors' characterization to the experimental and theoretical analysis of the data
- Barrier distributions show up significant differences among different systems
 - Fingerprint of the structure of the interacting nuclei and the dynamics of the reaction

Dissipation

- Fusion and quasielastic barrier distributions
- D_{QE} measurements at HIL :²⁰Ne + ^{90,92}Zr
- D_{QE} of ²⁰Ne + ^{92,94,95}Mo

Future plans

Why nuclear physics?

- Experimental nuclear physics allows you to follow an experiment in its entire process
 - From detectors' characterization to the experimental and theoretical analysis of the data
- Barrier distributions show up significant differences among different systems
 - Fingerprint of the structure of the interacting nuclei and the dynamics of the reaction

Dissipation

- Availability of new set-up at HIL

E. Piasecki, A. Trzcińska, M. Kowalczyk, M. Kisieliński, M. Wolińska-Cichocka, B. Zalewski, J. Choiński, K. Hadyńska-Klęk, G. Jaworski, M. Matuszewski, K. Piasecki, J. Samorajczyk-Pyśk, A. Stolarz, A. Tucholski

Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland

L. Calabretta, G. Cardella, D. Dell'Aquila, E. De Filippo, S. De Luca, F. Favela, E. Geraci, B. Gnoffo, G. Lanzalone, I. Lombardo, C. Maiolino, N. S. Martorana, A. Pagano, E. V. Pagano, S. Pirrone, G. Politi, L. Quattrocchi, D. Rizzo, F. Rizzo, A. Russo, P. Russotto, A. Trifiro, M. Trimarchi, M. Vigilante, C. Zagami Dip. di Fisica e Astronomia, Università di Catania, and INFN-LNS, Catania, Italy

W. Trzaska, G. Tiurin University of Jyväskylä, Jyväskylä, Finland

P. Koczoń , Y. Leifels , B. Lommel GSI, Darmstadt, Germany

P. W. Wen China Institute of Atomic Energy, Beijing, China Thank you for your attention

