Global Nuclear Physics Innovation

The Enterprise Europe Network and the Heavy Ion Laboratory of the University of Warsaw has the honor of inviting you to the brokerage event: Global Nuclear Physics Innovation.

Innovative solutions in the utilization of nuclear physics applications will challenge the minds of academia and industry during the dedicated event on 2nd & 3rd December 2020, in Warsaw, Poland (Online meetings).

The event will target a wide spectrum of laboratories, universities, companies from the power plant, medicine and pharmaceutical industry, space industry and beyond to foster the creation of technology transfers, collaborative research, innovation networks, innovation activities.

The nuclear physics laboratories facilities have the chance to established links with international industry and SMEs. The goal of brokerage event is to create a strong network of laboratories and industrial partners in the close relation which all the nuclear facilities and partners (better knowledge of the existing facilities for beam industrial users, wider market for technology transfer possibilities).

face to face meetings – the way to successful cooperation!

This 3rd edition of the Nuclear Physics Innovation of brokerage event is organized in a special time. Among the different areas of research activity, we add a special subject in reference to fighting against the COVID-19 – virus protein structure analysis with the use of synchrotron.

Event website: https://nupinno-2020.b2match.io/.

The official language of the brokerage meeting will be English.

Participation in the brokerage event is free.

White book

The online edition of the report “White Book on the Future of Low-energy Nuclear Physics in Poland and the Development of the National Research Infrastructure” edited by a team coordinated by Prof. Adam Maj (IFJ PAN Krakow) and Prof. Krzysztof Rusek (HIL, Warsaw) is released.

The report summarises a conference on the same topic organised by the Nuclear Physics Section of the Polish Physical Society, HIL and IFJ PAN at the beginning of 2019.  In particular, the report presents a wide range of research topics in low energy nuclear physics and its applications, planned by Polish research groups using Polish infrastructures.

New production methods of superheavy elements

Calculations made by Polish scientists in cooperation with a group of scholars from Dubna (Russia) allow predicting with previously unavailable accuracy the possibility of producing new isotopes of superheavy elements. In the article published in the prestigious journal Physics Letter B, they presented the most promising production channels for a wide range of isotopes with the atomic numbers from 112 to 118 in various configurations of nuclear collisions leading to their formation. The predictions appear to be reliable, as they are confirmed with excellent compatibility by the experimental data available for processes already tested.

In the article, to be released in October in the prestigious journal Physics Letters B, an international team of five scientists present new, promising predictions for the probabilities (cross-sections) of the production of heaviest isotopes of superheavy elements with the charge numbers from 112 to 118. Following future experiments, the calculations have been carried out for the fusion processes induced by Ca-48 calcium projectile.

Until now, the effects related to the shell nature of the saddle points in nuclear fission have not been considered at all, when calculating the probability of the formation of superheavy isotopes and  all researchers assume, that there are no quantum effects on this crucial nuclear configuration in the fission process. We included these effects in our research and provided a recipe for suppressing them as the formation temperature of a superheavy nuclear system increases. Such calculations have not been presented previously in the literature.

To get the result, the researchers used a statistical study, that generates millions of states above the ground state and the saddle point. They described in detail the method and results in a study submitted for another publication. Based on these results, it was quite easy to calculate the survival probability of the nuclei formed through a specific collision of a projectile with properly selected target. We simply estimated the competition for fission with different other decay channels, using a basic definition of the survival probability of a compound nucleus, without using an approximation. By studying the stability and analyzing the possible decay channels of the formed nuclei, scientists took into account decays by emission of neutrons, as well as protons and alpha particles.

The results presented in our  work correspond very well with the data obtained in recent experiments. At the same time, the authors point to the most promising production channels for new, so far unproduced isotopes, that could be used in future research. The excellent compatibility with existing excitation functions (probabilities of synthesis of superheavy nuclei) strengthens confidence in the correctness of the presented predictions. Channels emitting one proton or one alpha particle are particularly promising for some target-projectile combinations. This result is intriguing, because it may lead to new, unknown isotopes of superheavy nuclei. Since proposed reaction channels are not overly unusual, but rather are readily available by experiment, it will be soon revealed whether the predictions about the possibility of producing these new superheavy isotopes could be confirmed.

The original works are publicly accessible:

“Possibilities of direct production of superheavy nuclei with Z=112–118 in different evaporation channels”, J.Hong, G.G.Adamian, N.V.Antonenko, P.Jachimowicz, M.Kowal; Physics Letters B, Volume 809, 10 October 2020, 135760

https://www.sciencedirect.com/science/article/pii/S0370269320305633

“Level-density parameters in superheavy nuclei” A. Rahmatinejad, A. N. Bezbakh, T. M. Shneidman, G. Adamian, and N. V. Antonenko, P. Jachimowicz, M. Kowal

https://arxiv.org/pdf/2005.08685.pdf

Additional information:

The NCBJ Theoretical Physics Division deals with the study of the fundamental components of matter and the theoretical description of the basic interactions between them on both – micro and macro-world scales. The Division researches the basics of high and low energy nuclear physics (structure and dynamics), including the studies of the properties of heavy and superheavy nuclei. Our scientists are also developing the theory of the elementary particles, along with the supersymmetric models, that go beyond the currently known standard model, and quantum chromodynamics, that analyses the composition and interaction of nucleons. The Department is carrying out studies on the physics of non-linear phenomena, plasma physics, and the atomic condensates. Other areas of the research are theoretical cosmology and gravity theory, as well as string theory and its implications.

Photo: Cyclotron DC-280 in the Flerov Laboratory of Nuclear Reactions – Superheavy Element Factory in Joint Institute for Nuclear Research in Dubna. Credit: JINR